

Current Transducer LA 25-NP

For the electronic measurement of currents: DC, AC, pulsed, mixed, with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

Electrical data Primary nominal r.m.s. current Αt 25 I_{PN} Primary current, measuring range $0.. \pm 36$ Αt R_{M} $T_{\Delta} = 70^{\circ}C \mid T_{\Delta} = 85^{\circ}C$ Measuring resistance @ $R_{Mmin} R_{Mmax}$ @ ± 25 At max 100 315 100 320 with ± 15 V Ω @ ± 36 At max 100 190 100 185 Ω Secondary nominal r.m.s. current mΑ Conversion ratio 1-2-3-4-5 : 1000 Supply voltage (± 5 %) ± 15 Current consumption mΑ 10 + **I**_s R.m.s. voltage for AC isolation test, 50 Hz, 1 mn 2.5 kV R.m.s. rated voltage 1), safe separation 600 basic isolation 1700

Accuracy - Dynamic performance data										
X	Typical accuracy @ I _{PN} , T _A = 25°C	± 0.5	%							
$\mathbf{e}_{\scriptscriptstyle \perp}$	Linearity error	< 0.2	%							
	Officet coursest 2) @ L	Typ Max	A							
I _o	Offset current ²⁾ @ $\mathbf{I}_{p} = 0$, $\mathbf{T}_{A} = 25^{\circ}\text{C}$	± 0.05 ± 0.15								
I _{OM}	Residual current $^{3)}$ @ $I_{p} = 0$, after an overload of 3 x I_{pN}	± 0.05 ± 0.15	mΑ							
I_{OT}	Thermal drift of I 0°C + 25°C	± 0.06 ± 0.25	mΑ							
01	+ 25°C + 70°C	± 0.10 ± 0.35	mΑ							
	- 25°C + 85°C	± 0.5	mΑ							
	- 40°C + 85°C	± 1.2	mΑ							
t,	Response time 4 @ 90 % of I _{PN}	< 1	μs							
di/dt	di/dt accurately followed	> 50	A/µs							
f	Frequency bandwidth (- 1 dB)	DC 150	kHz							
General data										
T _A	Ambient operating temperature	- 40 + 85	°C							
T _s	Ambient storage temperature	- 45 + 90	°C							
R _P	Primary resistance per turn @ $T_A = 25$ °C	< 1.25	$ m \Omega$							

@ $T_{\Delta} = 70^{\circ}C$

@ $T_{\Delta} = 85^{\circ}C$

110

115

22

> 1500

EN 50178: 1997

Ω

Ω

 $M\Omega$

Standards
Notes: 1) Pollution class 2

Mass

 R_s

 $R_{\rm IS}$

m

- 2) Measurement carried out after 15 mn functioning
- 3) The result of the coercive field of the magnetic circuit
- 4) With a di/dt of 100 A/µs.

Secondary coil resistance

Isolation resistance @ 500 V, $T_{\Delta} = 25^{\circ}C$

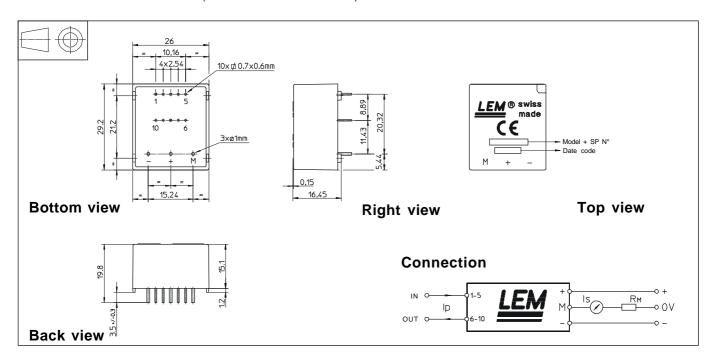
$I_{PN} = 5-6-8-12-25 A$

Features

- Closed loop (compensated) multirange current transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0.

Advantages

- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- · Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capability.


Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- · Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

040707/12

Dimensions LA 25-NP (in mm. 1 mm = 0.0394 inch)

Number	Primary	current	Nominal	Turns	Primary	Primary insertion	Recommended
of primary	nominal	maximum	output current	ratio	resistance	inductance	connections
turns	I _{PN} [A]	I _P [A]	I _{SN} [mA]	K _N	\mathbf{R}_{P} [m Ω]	L _P [μΗ]	
1	25	36	25	1/1000	0.3	0.023	5 4 3 2 1 IN 0-0-0-0-0 0-0-0-0-0 OUT 6 7 8 9 10
2	12	18	24	2/1000	1.1	0.09	5 4 3 2 1 IN 0-0 0-0-0 0-0 0-0-0 OUT 6 7 8 9 10
3	8	12	24	3/1000	2.5	0.21	5 4 3 2 1 IN 0-0 0 0-0 0-0 0 0-0 OUT 6 7 8 9 10
4	6	9	24	4/1000	4.4	0.37	5 4 3 2 1 IN 0 0-0 0 0 0 0-0 0 0 OUT 6 7 8 9 10
5	5	7	25	5/1000	6.3	0.58	5 4 3 2 1 IN 0 0 0 0 OUT 6 7 8 9 10

Mechanical characteristics

- General tolerance
- Fastening & connection of primary
- Fastening & connection of secondary
- Recommended PCB hole
- ± 0.2 mm
- 10 pins 0.7 x 0.6 mm
- 3 pins \varnothing 1 mm
- 1.2 mm

Remarks

- $I_{\rm S}$ is positive when $I_{\rm P}$ flows from terminals 1, 2, 3, 4, 5 to terminals 10, 9, 8, 7, 6
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.