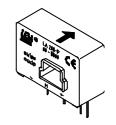


Current Transducer LA 200-P


For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

El	ectrical data							
I _{PN}	Primary nominal r.m.s. current				200			
I _P	Primary current, measuring range				0 :	Α		
$R_{_{\mathrm{M}}}$	Measuring resistance @	7			70°C	$T_A = 88$	5°C	
	R_{M}				nin R M max R M min R M max			
	with ± 12 V	@ ± 200	A max	0	30	0 2	6 Ω	
		$@ \pm 250$	A max	0	8	0 4	Ω	
	with ± 15 V	$@ \pm 200$	A max	0	60	0 5	Ω	
		@ ± 300	A _{max}	0	12	0 8	Ω	
$I_{_{\mathrm{SN}}}$	Secondary nominal r.m.s. current				100		m A	
$\mathbf{K}_{_{\mathrm{N}}}$	Conversion ratio	tio			1:2			
V_{c}	Supply voltage (± 5 %)					± 12 15		
I _c	Current consumption					16(@±15V)+ I _S		
V _d	R.m.s. voltage for AC isol	ation test,			3		kV	
$\mathbf{V}_{_{\mathrm{b}}}$	R.m.s. rated voltage, 1)		safe sepai		900		V	
.,	D 14 (4.1		basic isola	ation	450		V	
V _e	R.m.s. voltage for partial discharge extinction			> 1.8		kV kV		
$\hat{\mathbf{v}}_{w}$	Impulse withstand voltage 1.2/50 μs > 8							
Accuracy - Dynamic performance data								
X	Accuracy @ I_{PN} , $T_A = 25^{\circ}C$		② ± 15 V (±		± 0.4	40	%	
		@ ± 1	2 15 V (±	5 %)	± 0.0		%	
$\mathbf{e}_{\scriptscriptstyle extsf{L}}$	Linearity error				< 0.		%	
					Typ) Max	(
I_{\circ}	Offset current @ $I_p = 0$, $T_A = 25$ °C					± 0.2		
ОМ	Residual current ²⁾ @ $I_p = 0$, after an overload of 3 x I_{PN}				' I	± 0.2		
I _{OT}	Thermal drift of I _o		0°C +			10 ± 0.2		
			· 40°C +	85°C	l± 0.1	151 ± 0.5	5 m A	
t ra	Reaction time @ 10 % of				< 50	00	ns	
t,	Response time ^{3) 4)} @ 90				< 1	_	μs	
di/dt	di/dt accurately followed 4)				> 20		A/µs	
f	Frequency bandwidth 4) (-	1 dB)			DC .	100	kHz	
Ge	eneral data							
T_A	Ambient operating tempe	rature			- 40	+ 85	°C	
T _s	Ambient storage tempera	ture			- 40	+ 90	°C	
\mathbf{R}_{s}	Secondary coil resistance	@	$T_A = 0$		76		Ω	
			$T_A = 0$	85°C	80		Ω	
m	Mass				40		g	
	Standards					EN 50178 : 1997		

 $I_{PN} = 200 A$

Features

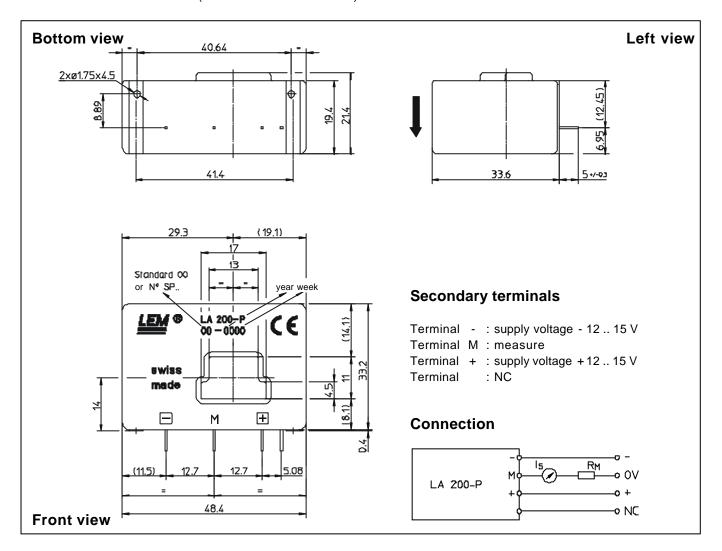
- Closed loop (compensated) current transducer using the Hall effect
- Printed circuit board mounting
- Insulated plastic case recognized according to UL 94-V0.

Advantages

- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capability.

Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.


Notes: 1) Pollution class 2

- ²⁾ The result of the coercive field of the magnetic circuit
- 3) With a di/dt of 100 A/µs
- ⁴⁾ The primary conductor is best filling the through-hole and/or the return of the primary conductor is above the top of the transducer.

040713/10

Dimensions LA 200-P (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

General tolerance

• Primary through-hole

Recommended PCB hole

 Supplementary fastening Recommended PCB hole Recommended screws ± 0.2 mm

17 x 11 mm

• Fastening & connection of primary 4 pins 0.63 x 0.56 mm

0.9 mm

2 holes Ø 1.75 mm

2.4 mm

PT KA 22 x 6

Remarks

- I_s is positive when I_s flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 90°C
- Dynamic performances (di/dt and response time) are best with a primary bar in low position in the through-hole.
- In order to achieve the best magnetic coupling, the primary windings have to be wound over the top edge of the device.
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.