

Current Transducer LT 2005-S

For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

$I_{PN} = 2000 A$

Electrical data

I _{PN} I _P R _M	Primary nominal r.m.s. current Primary current, measuring range @ ± 24 V Measuring resistance		2000 0 ± 3000 $R_{M min}$ $R_{M max}$		A A
	with ± 15 V	@ $\pm 2000 \text{ A}_{max}$ @ $\pm 2200 \text{ A}_{max}$	0	7.5 4	$\Omega \ \Omega$
	with ± 24 V	@ ± 2000 A max @ ± 3000 A max	5 5	27.5 10	Ω Ω
I _{SN} V _C I _C V _d	Secondary nominal r.m.s Conversion ratio Supply voltage (± 5 %) Current consumption R.m.s. voltage for AC iso	s. current	400 1:500 ± 15 33(@±		m A V m A k V

Accuracy - Dynamic performance data

$\overset{\textbf{X}}{e}_{\text{\tiny L}}$	Overall accuracy @ \mathbf{I}_{PN} , \mathbf{T}_{A} = 25°C Linearity		± 0.3 < 0.1		% %
Ι _ο Ι _{οτ}	Offset current @ $I_p = 0$, $T_A = 25$ °C Thermal drift of I_O	0°C + 70°C	Typ ± 0.2	Max ± 0.8 ± 0.3	m A m A
t _, di/dt f	Response time 1) @ 90 % of I _{PN} di/dt accurately followed Frequency bandwidth (- 1 dB)		< 1 > 50 DC 1	00	μs A/μs kHz

General data

\mathbf{T}_{A}	Ambient operating temperature	0 + 70	°C
T _s	Ambient storage temperature	- 25 + 85	°C
R _s	Secondary coil resistance @ T _A = 70°C	25	Ω
m	Mass	1.5	kg
	Standards ²⁾	EN 50178(97.10.01)	

Features

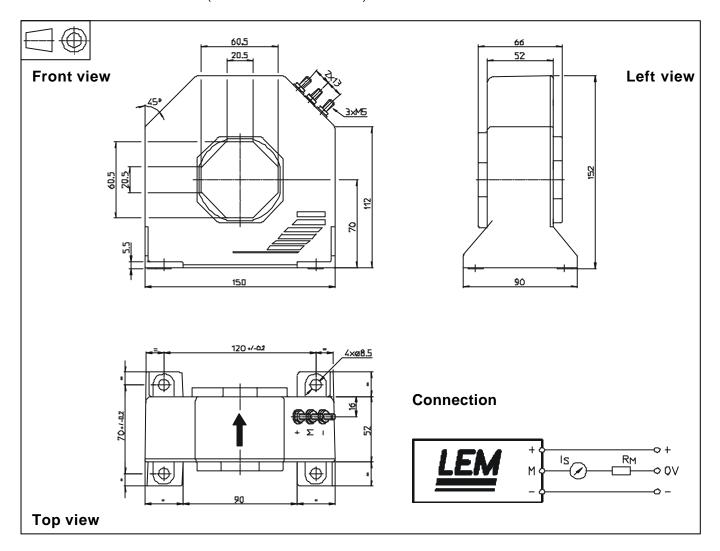
- Closed loop (compensated) current transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0.

Advantages

- Excellent accuracy
- · Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- · Current overload capability.

Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.


Notes : 1) With a di/dt of 100 A/µs

2) A list of corresponding tests is available

030627/6

Dimensions LT 2005-S (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

- General tolerance
- Transducer fastening

Recommended fastening torque

- Primary through-hole
- Connection of secondary
 Recommended fastening torque
- ± 0.5 mm
- 4 holes Ø 8.5 mm
- 4 M8 steel screws
- 10 Nm or 7.38 Lb. -Ft.

60.5 x 60.5 mm

M5 threaded studs

2.2 Nm or 1.62 Lb - Ft

Remarks

- I_s is positive when I_p flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100°C
- Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.