

Voltage Transducer CV 4-4000/SP1

 $V_{PN} = 2800 V$

For the electronic measurement of voltages: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high voltage) and the secondary circuit (electronic circuit).

Electrical data

\mathbf{V}_{PN}	Primary nominal r.m.s. voltage	2800	V
V _P	Primary voltage, measuring range	0 ± 4000	V
V s	Secondary analog voltage @ V _{P max.}	10	V
K _N	Conversion ratio	4000 V / 10 V	
R	Load resistance	з 2	$k\Omega$
\mathbf{C}^{L}	Capacitance loading	£ 5	nF
$V_{\rm c}$	Supply voltage (± 10 %)	± 24	V
I _C	Current consumption	$35 + V_{\rm S}/R_{\rm L}$	m A
V _d	R.m.s. voltage for AC isolation test, 50 Hz, 1 mn	9.5	kV
V _e	R.m.s. voltage for partial discharge extinction @ 10 pC	3.75	kV

Accuracy - Dynamic performance data

			Гіур	wax	
\mathbf{X}_{G}	Overall accuracy @ V _{P max}	$T_A = 25^{\circ}C$		± 0.4	%
		- 40°C + 70°C		± 1.0	%
\mathbf{v}_{\circ}	Offset voltage @ $\mathbf{V}_{P} = 0$	$T_A = 25^{\circ}C$		± 20	mV
		- 40°C + 70°C		± 60	mV
t,	Response time 1) @ 90 % of V _{PN}		≅ 50		μs
f	Frequency bandwidth (-3 dB) @ 50 % of V _{PN}		DC 6		kHz

General data

\mathbf{T}_{A}	Ambient operating temperature	- 40 + 70	°C	
T _s	Ambient storage temperature	- 50 + 85	°C	
P	Total primary power loss	2.8	W	
R,	Primary resistance	2.8	$M\Omega$	
m [']	Mass	750	g	
	Standards ^{2) 3)}	EN 50155		
		EN 50178		

Features

- Closed loop (compensated) voltage transducer
- Insulated plastic case recognized according to UL 94-V0
- · Patent pending.

Special features

- $V_C = \pm 24 (\pm 10 \%) V$
- $V_d = 9.5 \text{ kV}$
- $T_A = -40^{\circ}C ... + 70^{\circ}C$
- Shield
- Connection to secondary circuit on SUB-D 9 Poles (male).

Advantages

- Excellent accuracy
- Very good linearity
- Low thermal drift.

Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Uninterruptible Power Supplies (UPS)
- Power supplies for welding applications
- Railway overhead line voltage measurement.

 $\underline{\text{Notes}}$: 1) With a dv/dt of 1000 V/ μ s

Specifications according to IEC 1000-4-3 are not guaranteed around 100 MHz. Sensitivity to induced radiation on connecting cable.

³⁾ A list of corresponding tests is available.

000329/5

Dimensions CV 4-4000/SP1 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

• General tolerance ± 0.5 mm

Fastening

Connection of primary
Fastening torque
M5 threaded studs
2.2 Nm or 1.62 Lb. -Ft.

• Connection of secondary SUB-D 9 Poles (male)

4 slots Ø 6.6 mm

ullet Connection to the ground hole \varnothing 6.5 mm

Remark

• V_s is positive when V_p is applied on terminal +HT.